Benha University Faculty of Engineering- Shoubra Eng. Mathematics & Physics Department Qualifying Studies (Mathematics)Final Term Exam Date: 17 / 5 / 2014 Operations Research Duration: 3 hours	1
 Answer All questions The Exam consists of one page No. of questions: 4 Total Mark: 200 	
[1](a)Write the mathematical form of mathematical programming problem.	20
Also, classify the mathematical programming problems. (b) Write and solve the dual problem of the LP problem:	30
(b) Write and solve the dual problem of the LP problem: minimize $f = 3x + y$	50
s.t $x - y \le 4, -x + y \le 1, x + y \ge 3, x, y \ge 0$	
[2]Solve the LP problems: (a)maximize $f = 3x - y + 2z$	
s.t $x + 2y - 2z \le 4$, $-y + 2z \le 5$, $-x + y \le 6$, $x, y, z \ge 0$	30
(b) maximize $f = 5x + y + 4z$ s.t $x + y + 2z \le 20$, $2x + 3y + 2z = 10$, $x + 2y + 2z \ge 6$, $x, y, z \ge 0$	30
$3.t x + y + 2L \le 20, 2x + 3y + 2L = 10, x + 2y + 2L \le 0, x, y, L \le 0$	50
[3](a) State the definition of convex set.	5
(b) State the definition of convex function.(c)Prove that: Any local solution of a convex programming problem is also global.	5
(d)Prove that: The minimum of a non constant function f on a convex set $\mathbf{G} \subset \mathbf{R}^{\mathbf{n}}$	20 20
can not be attained at interior point.	
[4](a) A manufacturer makes automobiles and trucks in a factory that is divided in	20
two shops. Shop1, which performs the basic assembly operation, must work 5 ma	
days on each truck but only 2 man-days on each automobile. Shop 2, which perform finishing operations, must work 3 man-days on each automobile or truck that	
produces. Because of men and machine limitation shop1 has 180 man-days per we	ek
available while shop 2 has 135 man-days per week. If the manufacturer makes a pro of LE 300 on each truck and LE 200 on each automobile. How many of each show	
he produce to maximize his profit?	10
(b)Solve the assignment problem:	20
Machine $\begin{bmatrix} 4 & 8 & 12 & 6 \end{bmatrix}$	
Job 10 / 10 / 10 /	
Job $ \begin{bmatrix} 4 & 8 & 12 & 6 \\ 18 & 7 & 10 & 9 \\ 8 & 5 & 11 & 7 \\ 16 & 7 & 8 & 5 \end{bmatrix} $	
Good Luck Dr. Mohamed Eid	